
www.manaraa.com

Smodels � an implementation of the stable modeland well-founded semantics for normal logicprogramsIlkka Niemelä and Patrik SimonsHelsinki University of TechnologyDept. of Computer Science and EngineeringDigital Systems LaboratoryP.O. 1100, FIN-02015 HUT, Finland{Ilkka.Niemela,Patrik.Simons}@hut.fiAbstract. The Smodels system is a C++ implementation of the well-founded and stable model semantics for range-restricted function-freenormal programs. The system includes two modules: (i) smodels whichimplements the two semantics for ground programs and (ii) parse whichcomputes a grounded version of a range-restricted function-free normalprogram. The latter module does not produce the whole set of ground in-stances of the program but a subset that is su�cient in the sense that nostable models are lost. The implementation of the stable model semanticsfor ground programs is based on bottom-up backtracking search where apowerful pruning method is employed. The pruning method exploits anapproximation technique for stable models which is closely related to thewell-founded semantics. One of the advantages of this novel technique isthat it can be implemented to work in linear space. This makes it possibleto apply the stable model semantics also in areas where resulting pro-grams are highly non-strati�ed and can possess a large number of stablemodels. The implementation has been tested extensively and comparedwith a state of the art implementation of the stable model semantics, theSLG system. In tests involving ground programs it clearly outperformsSLG.1 IntroductionIn recent years there has been a considerable amount of work on the formal un-derpinnings of declarative logic programming. This has led to the development ofseveral alternative semantics for the procedural SLDNF semantics employed instandard Prolog implementations. For normal logic programs the leading declar-ative approaches are the stable model semantics [8] and the well-founded seman-tics [15]. Until quite recently there has been relatively little work on developingserious implementations for these new semantics with the notable exception ofthe work of D. Warren's group on implementing the well-founded semantics. Thishas led to a WAM implementation [13]. Our aim is to make a serious attempt atimplementing the stable model semantics. We focus on range-restricted function-free normal programs for which the stable model semantics is computable. In

www.manaraa.com

our approach a construction closely related to the well-founded semantics playsan important role and has led us to devise also an implementation of the well-founded semantics.In this paper we describe our implementation of the well-founded and stablemodel semantics for range-restricted function-free normal programs. The imple-mentation includes two modules: (i) an algorithm for implementing the stablemodel semantics for ground programs and (ii) an algorithm for computing agrounded version of a range-restricted function-free normal program. The latteralgorithm does not generate the whole set of ground instances of the programbut a subset that is su�cient to ensure that no stable models are lost.The implementation is able to solve a range of computational problems re-lated to normal programs.� It can compute the well-founded model of a program.� It is able to decide whether a program has a stable model.� It can generate all or a given number of stable models of a program.� It is also able to handle two basic query-answering tasks, i.e., to decidewhether a given literal is satis�ed in some or all of the stable models of aprogram.The implementation of the stable model semantics for ground programs isbased on a novel technique where bottom-up backtracking search with a power-ful pruning method is employed [11, 12]. One of the advantages of this techniqueis that it can be implemented to work in linear space. This opens up the possi-bility to apply the stable model semantics in areas where resulting programs arehighly non-strati�ed and possess a potentially large number of stable models.The linear space complexity ensures that these kinds of hard instances can besolved provided that adequate amount of running time is allocated. We havetested the implementation extensively. In order to obtain challenging test caseswe have used, e.g., combinatorial graph problems as a test domain. This domainhas also been used in TheoryBase [5] which is a system for generating test casesfor nonmonotonic reasoning.There are several approaches to computing stable models (see, e.g., [1]). Re-cently, some more advanced implementations have emerged [2, 4, 14, 6]. Themethods described in [2, 14] cannot handle programs with a large number ofstable models because of exponential worst-case space requirements, and whenconsidering programs with a few stable models, our implementation seems tooutperform them. The DeReS system [6] implements Reiter's default logic andcan thus be used also for computing stable models. The SLG system [3, 4] ap-pears to be able to handle larger examples. We have performed an experimentalcomparison between our system and SLG. In the tests our system clearly outper-formed SLG. For further details of the tests and a comparison of the techniquesused in the two systems, see [11, 12].The rest of the paper is organized as follows. In the next section we de-scribe some of the underlying ideas of our implementation techniques. Section 3illustrates the use of the system. Section 4 contains some results from the ex-

www.manaraa.com

perimental evaluation of the system and Section 5 explains how to obtain thesystem.2 Theoretical Background and ImplementationTechniquesOur implementation of the stable model semantics for ground programs is basedon an approach introduced for implementing default logic [10]. This approachprovides a framework for developing bottom-up methods for computing exten-sions of default theories. We have used the framework to devise an e�cientimplementation for the stable model semantics. One of the underlying ideas inthe approach is that stable models are characterized in terms of their so-calledfull sets, i.e., their complements with respect to the negative atoms in the pro-gram (negative atoms in the program for which the corresponding positive atomsare not included in the stable model) [10, 11]. This characterization leads to anovel bottom-up backtracking algorithm for searching for stable models. Thealgorithm exploits a powerful pruning method which is based on approximatingstable models. The approximation technique is closely related to the well-foundedsemantics. The algorithm is also able to handle focused model search, i.e., to con-centrate the search on models with given characteristics, e.g., not containing agiven set of atoms. The algorithm has been implemented in C++ and the im-plementation possesses some interesting properties.� It includes an e�cient (quadratic time) algorithm for computing the well-founded model of a ground program. The algorithm employs a Fitting op-erator to speed up the computation. In practice the well-founded model canoften be computed in linear time.� It runs in linear space.� It employs linear time algorithms for computing the deductive closures thatare needed in the algorithm.� It exploits a dynamic search heuristic.Our algorithm for computing the grounded version of a range-restrictedfunction-free normal program is based on the idea of generating only those in-stances of range-restricted rules that are at least potentially applicable in thestable models of the program. Descriptions of both algorithms and details of theimplementation techniques can be found in [11, 12].3 Using SmodelsIn order to compute stable models, one uses the program smodels that computesthe models, and the parser parse that translates logic programs into a formatsmodels accepts, see Figure 1. Both programs work as �lters, i.e., they read fromthe standard input and write to the standard output. We begin by describing

www.manaraa.com

-range-restrictedlogicprogram parse -internalrepresentation smodels -stablemodelsFig. 1. Overall Architecturethe input format to parse and continue with the options and some examples oftheir use.The parser accepts the following syntax. The atoms are strings of parenthe-ses, underscores, alphabetical, and numerical characters. In the case of range-restricted programs, atoms begin with a lower-case alphabetical or a numericalcharacter, and variables with an upper-case alphabetical character. The paren-theses must always match. To express negation one uses not-atoms, which areatoms preceded by the string `not'. A rule begins with an atom denoting its headfollowed by the inference symbol `:�', which is in turn followed by the body ofthe rule as a comma separated list of atoms and not-atoms. Finally, the ruleends with a period. As an example, the rulea b; not(c)is written as a :� b; not c:Comments begin with a percent sign and end with a line-break. Moreover, theparser allows rules with variables as long as the rules are range-restricted. A ruleis range-restricted if the variables that appear in the head or in the negativeliterals in the body of the rule also appear in the positive literals in the body ofthe rule. Thus, the rulesa(X) :� b(X); not c: and p :� q�f(X)�; not r(X):are range-restricted, but the rulesa(X) :� b(Y): and p :� not q(X):are not. Note that functions are accepted but ignored, they are only treated aspart of the predicates.The number of stable models that are computed can be determined by thestring `compute' followed by a number. Alternatively, if the string `compute' isfollowed by the string `all', then all stable models are computed. If the `compute'string is not speci�ed, at most one stable model is computed.If the previous construction is followed by a comma separated list of atomsand not-atoms enclosed in braces, then only stable models that contain the atomsand do not contain the not-atoms in the list are computed.

www.manaraa.com

The idea of the `compute' instruction is to provide the ability to performfocused model search, i.e., to concentrate the search on models with given con-ditions. This means that smodels can be used not only to generate a given numberof stable models but also for query-evaluation. For instance, if we want to eval-uate whether there is a stable model of a program containing the atom p(a)but not the atom d, we would use an input �le containing the program and a`compute' instruction as follows% input programp(X) :� r(X); not q(X):q(X) :� r(X); not p(X):r(b) :� not d:d :� not p(c):r(c) :� r(b):r(a):% query speci�cationcompute f p(a); not d gFor this input �le, the system would return a stable model containing the atomp(a) but not the atom d provided that such a model exists. To evaluate whetherp(a) is in every stable model of the program, the `compute' instruction is changedto compute f not p(a) gThen the system searches for a counter-model, i.e., a model not containing p(a).If no such model is found, p(a) belongs to every stable model of the program.We now turn to the command line options. The parser takes two options;the option `-plain', which treats variables as ordinary atoms, and the option `-text', which produces readable output in the form of a logic program, i.e., if theprogram is range-restricted it is �rst grounded and then displayed.The program smodels takes one optional argument and one option, `-w'. Theargument is a number determining how many stable models are computed, azero indicating all. The option, when present, makes smodels compute only thewell-founded model.In conclusion, a stable model of the set of rules in the �le `prog' wouldtypically be computed by the command lineparse < prog j smodelsproducing the outputsmodels version 1.5. Reading...doneAnswer: 1Stable Model: p(a) p(c) r(c) p(b) r(b) r(a)Full set: d q(c) q(b) q(a)TrueDuration: 0.013Number of extension calls: 2

www.manaraa.com

Number of wrong choices: 0Number of atoms: 10Number of rules: 10The line `Answer: 1' indicates that the following stable model is the �rst one,which together with the corresponding full set is printed on the next two lines.The word `True' tells us that there might be more stable models, whereas theword `False' would have told us that there are no more stable models. Theduration is expressed in seconds and includes the time it takes to read the inputand print the output. The number of extension calls indicates how much of thesearch space has been explored, and the number of wrong choices indicates howmany times backtracking has taken place. The number of atoms and rules areself-explanatory.4 EvaluationWe have tested our implementation quite extensively using test cases from� the logic programming literature,� combinatorial graph problems,� circuit diagnosis, and� propositional satis�ability.Here we brie�y describe some tests involving n-colorings and Hamiltonian cir-cuits in planar graphs, and propositional satis�ability. For more details, furtherresults, and a comparison against the SLG system we refer to [11, 12].The graphs in the tests are created with the Stanford GraphBase [9], a highlyportable collection of programs that serves as a platform for combinatorial algo-rithms. The propositional formulas, in turn, are randomly generated formulas inconjunctive normal form, whose clauses contain exactly three atoms, and whoseclause to atom ratio is 4.3. This ratio was chosen, as it determines a region ofhard satis�ability problems [7]. The formulas are generated by a program devel-oped by Bart Selman.The test cases are generated by translating a given graph to a ground logicprogram in such a way that every stable model of the program corresponds to asolution to the problem in question.We translate the n-coloring problem from a graph into a logic program inthe following way. For each vertex a, with neighbors p1; : : : ; pj , and each colori 2 f0; 1; : : : ; n� 1g, we include the rulecolor(a; i) not�color(p1; i)�; : : : ; not�color(pj ; i)�;not�color(a; i+ 1 mod n)�; : : : ;not�color(a; i+ n� 1 mod n)�;and for each vertex a we include the ruleh not�color(a; 0)�; not�color(a; 1)�; : : : ; not�color(a; n� 1)�:

www.manaraa.com

Finally, we consider only the stable models that do not contain the atom h.The translation of the Hamiltonian circuit problem is somewhat more com-plicated. For each pair (a; b) of vertices in the graph such that there is an edgebetween a and b, and where b1; : : : ; bi are the neighbors of a excluding b, anda1; : : : ; aj are the neighbors of b excluding a, we include the ruleedge(b; a) not�edge(b1; a)�; : : : ; not�edge(bi; a)�;not�edge(b; a1)�; : : : ; not�edge(b; aj)�;not�edge(a; b)�:Fix a vertex d. For each pair (a; b) of vertices in the graph such that there is anedge between a and b, if b 6= d we include the ruleb a; edge(a; b);and if b = d we include the ruled0 a; edge(a; d):Finally, we add the rule d , and consider only the stable models that do notcontain the vertex a, for a 6= d, nor the atom d0.In contrast, the translation of the 3-SAT problem is entirely straightforward.For every atom a we add the rulesa not(a) and a not(a);and for every clause c we add c a if a is in the clause, and c a if :a is inthe clause. The satisfying assignments are then given by the stable models thatcontain all clauses.Some test results are tabulated in Figure 2. They have been calculated asthe average time of ten di�erent runs on a pseudo-randomly shu�ed set of rules.The rationale for shu�ing the set of rules is that a particular ordering of therules might help the algorithm to avoid backtracking and thus give a skewedpicture of its behavior. All times are in seconds, and they represent the time to�nd one stable model if one exists, or the time to decide that there are no stablemodels.The tests were run on a Pentium 75MHz, with 32 MB of memory and theLinux 2.0.29 operating system. The C++ program smodels was compiled usinggcc version 2.7.2.1.When evaluating our system we have used test cases generated from randomgraphs and random propositional formulas. There are a number of reasons forusing these kinds of randomly generated test cases. First, in order to determinethe scalability and limits of the implementation it is important to have classes oftest cases of increasing size and complexity instead of single isolated examples.Our experience indicates that test cases based on combinatorial problems quitenaturally provide such classes of examples.Second, our aim is to develop a framework for declarative logic programmingwhere the performance of the system is not too sensitive to the way in which

www.manaraa.com

the program is represented. Finding a stable model is a typical combinatorialproblem where tuning the test cases even in a very modest way, e.g., by changingthe order of some rules in the program, can lead to huge improvements in therunning times. This might then give a totally unrealistic picture of the actualperformance and stability of the algorithm. By using random test cases and byshu�ing the input program, we can evaluate the stability of the implementationin a declarative setting.Third, there are a lot of results on solving combinatorial problems involvingrandomly generated instances. Hence, we know how to �nd hard instances ofthese problems and we know the performance of the best special purpose algo-rithms. It is indeed very important to have points of reference independent oflogic programming techniques for measuring the e�ciency and overhead of logicprogramming implementations.Planar graphs, 3-coloringVertices Rules Min Average Max100 400 0.06 0.06 0.06200 800 0.11 0.15 0.28300 1200 0.24 0.25 0.25400 1600 0.30 0.32 0.35500 2000 0.32 0.37 0.39600 2400 0.36 0.43 0.45700 2800 0.45 0.51 0.59800 3200 0.52 0.57 0.60900 3600 0.63 0.65 0.67
Planar graphs, 4-coloringVertices Rules Min Average Max10 50 0.01 0.02 0.0820 100 0.02 0.02 0.0830 150 0.03 0.05 0.1040 200 0.04 0.08 0.1150 250 0.05 0.09 0.1760 300 0.06 0.15 0.6570 350 0.08 45.81 456.0880 400 0.09 0.14 0.2290 450 0.11 14.39 138.46Planar graphs, Hamiltonian circuitVertices Rules Min Average Max14 133 0.03 0.04 0.0516 157 0.05 0.51 1.2818 181 0.07 0.85 3.1720 197 0.07 0.13 0.2922 221 0.09 0.10 0.1324 245 0.10 19.04 91.3826 269 0.12 55.68 272.6728 293 0.14 47.56 441.2730 317 0.16 673.70 3417.52

Random 3-SATAtoms Rules Min Average Max20 298 0.02 0.03 0.0930 447 0.03 0.04 0.0640 596 0.04 0.15 0.2650 745 0.24 0.40 0.8760 894 0.38 1.08 2.4370 1043 0.25 0.93 2.2280 1192 0.67 5.27 15.6290 1341 0.31 6.41 39.51100 1490 17.68 101.83 278.05Fig. 2. Test Results5 AvailabilityThe Smodels system is freely available at http://saturn.hut.�/pub/smodels/.Documentation and an extensive set of test cases, including those described inthe previous section, are available at the same location.

www.manaraa.com

In order to make use of the system you will need a C++ compiler and otherstandard tools such as make and tar. The system has been developed underLinux and should work as is on any platform having the appropriate GNU toolsinstalled.6 ConclusionsWe have developed a C++ implementation of the well-founded and stable modelsemantics for range-restricted function-free normal programs. The main empha-sis has been in developing an implementation of the stable model semantics thatcould be used in realistic applications. The novel implementation technique,leading to linear space complexity, has turned out to be very competitive whencompared to other available implementation methods. Our implementation ap-pears to be the only available system capable of handling non-strati�ed groundprograms with several hundreds or even thousands of rules quite e�ciently. Thisindicates that our implementation has signi�cantly advanced the state of theart in computing the stable model semantics and has brought the semanticsconsiderably closer to applications.References1. C. Baral and M. Gelfond. Logic programming and knowledge representation.Journal of Logic Programming, 19&20(73�148), 1994.2. C. Bell, A. Nerode, R.T. Ng, and V.S. Subrahmanian. Mixed integer programmingmethods for computing nonmonotonic deductive databases. Journal of the ACM,41(6):1178�1215, November 1994.3. W. Chen and D.S. Warren. The SLG system, 1993. Available at ftp://seas.smu.edu/pub/ or ftp://sbcs.sunysv.edu/pub/XSB/.4. W. Chen and D.S. Warren. Computation of stable models and its integration withlogical query processing. IEEE Transactions on Knowledge and Data Engineering,8(5):742�757, 1996.5. P. Cholewi«ski, V.W. Marek, A. Mikitiuk, and M. Truszczy«ski. Experimentingwith nonmonotonic reasoning. In Proceedings of the 12th International Conferenceon Logic Programming, pages 267�281, Tokyo, June 1995.6. P. Cholewi«ski, V.W. Marek, and M. Truszczy«ski. Default reasoning systemDeReS. In Proceedings of the 5th International Conference on Principles of Knowl-edge Representation and Reasoning, pages 518�528, Cambridge, MA, USA, Novem-ber 1996. Morgan Kaufmann Publishers.7. J.M. Crawford and L.D. Auton. Experimental results on the crossover point inrandom 3-SAT. Arti�cial Intelligence, 81(1):31�57, 1996.8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.In Proceedings of the 5th International Conference on Logic Programming, pages1070�1080, Seattle, USA, August 1988. The MIT Press.9. D.E. Knuth. The Stanford GraphBase, 1993. Available at ftp://labrea.stanford.edu/.

www.manaraa.com

10. I. Niemelä. Towards e�cient default reasoning. In Proceedings of the 14th In-ternational Joint Conference on Arti�cial Intelligence, pages 312�318, Montreal,Canada, August 1995. Morgan Kaufmann Publishers.11. Ilkka Niemelä and Patrik Simons. E�cient implementation of the well-foundedand stable model semantics. In M. Maher, editor, Proceedings of the Joint Inter-national Conference and Symposium on Logic Programming, pages 289�303, Bonn,Germany, September 1996. The MIT Press.12. Ilkka Niemelä and Patrik Simons. E�cient implementation of the well-founded and stable model semantics. Fachbericht Informatik 7�96, UniversitätKoblenz-Landau, 1996. Available at http://www.uni-koblenz.de/universitaet/fb4/publications/GelbeReihe/.13. K. Sagonas, T. Swift, and D.S. Warren. An abstract machine for computing thewell-founded semantics. In M. Maher, editor, Proceedings of the Joint Interna-tional Conference and Symposium on Logic Programming, pages 274�288, Bonn,Germany, September 1996. The MIT Press.14. V.S. Subrahmanian, D. Nau, and C. Vago. WFS + branch bound = stable models.IEEE Transactions on Knowledge and Data Engineering, 7(3):362�377, 1995.15. A. Van Gelder, K.A. Ross, and J.S. Schlipf. The well-founded semantics for generallogic programs. Journal of the ACM, 38(3):620�650, July 1991.

This article was processed using the LATEX macro package with LLNCS style

