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Abstract. The Smodels system is a C++ implementation of the well-
founded and stable model semantics for range-restricted function-free
normal programs. The system includes two modules: (i) smodels which
implements the two semantics for ground programs and (ii) parse which
computes a grounded version of a range-restricted function-free normal
program. The latter module does not produce the whole set of ground in-
stances of the program but a subset that is sufficient in the sense that no
stable models are lost. The implementation of the stable model semantics
for ground programs is based on bottom-up backtracking search where a
powerful pruning method is employed. The pruning method exploits an
approximation technique for stable models which is closely related to the
well-founded semantics. One of the advantages of this novel technique is
that it can be implemented to work in linear space. This makes it possible
to apply the stable model semantics also in areas where resulting pro-
grams are highly non-stratified and can possess a large number of stable
models. The implementation has been tested extensively and compared
with a state of the art implementation of the stable model semantics, the
SLG system. In tests involving ground programs it clearly outperforms
SLG.

1 Introduction

In recent years there has been a considerable amount of work on the formal un-
derpinnings of declarative logic programming. This has led to the development of
several alternative semantics for the procedural SLDNF semantics employed in
standard Prolog implementations. For normal logic programs the leading declar-
ative approaches are the stable model semantics [8] and the well-founded seman-
tics [15]. Until quite recently there has been relatively little work on developing
serious implementations for these new semantics with the notable exception of
the work of D. Warren’s group on implementing the well-founded semantics. This
has led to a WAM implementation [13]. Our aim is to make a serious attempt at
implementing the stable model semantics. We focus on range-restricted function-
free normal programs for which the stable model semantics is computable. In
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our approach a construction closely related to the well-founded semantics plays
an important role and has led us to devise also an implementation of the well-
founded semantics.

In this paper we describe our implementation of the well-founded and stable
model semantics for range-restricted function-free normal programs. The imple-
mentation includes two modules: (i) an algorithm for implementing the stable
model semantics for ground programs and (ii) an algorithm for computing a
grounded version of a range-restricted function-free normal program. The latter
algorithm does not generate the whole set of ground instances of the program
but a subset that is sufficient to ensure that no stable models are lost.

The implementation is able to solve a range of computational problems re-
lated to normal programs.

— It can compute the well-founded model of a program.

— It is able to decide whether a program has a stable model.

— It can generate all or a given number of stable models of a program.

It is also able to handle two basic query-answering tasks, i.e., to decide
whether a given literal is satisfied in some or all of the stable models of a
program.

The implementation of the stable model semantics for ground programs is
based on a novel technique where bottom-up backtracking search with a power-
ful pruning method is employed [11, 12]. One of the advantages of this technique
is that it can be implemented to work in linear space. This opens up the possi-
bility to apply the stable model semantics in areas where resulting programs are
highly non-stratified and possess a potentially large number of stable models.
The linear space complexity ensures that these kinds of hard instances can be
solved provided that adequate amount of running time is allocated. We have
tested the implementation extensively. In order to obtain challenging test cases
we have used, e.g., combinatorial graph problems as a test domain. This domain
has also been used in TheoryBase [5] which is a system for generating test cases
for nonmonotonic reasoning.

There are several approaches to computing stable models (see, e.g., [1]). Re-
cently, some more advanced implementations have emerged [2, 4, 14, 6]. The
methods described in [2, 14] cannot handle programs with a large number of
stable models because of exponential worst-case space requirements, and when
considering programs with a few stable models, our implementation seems to
outperform them. The DeReS system [6] implements Reiter’s default logic and
can thus be used also for computing stable models. The SLG system [3, 4] ap-
pears to be able to handle larger examples. We have performed an experimental
comparison between our system and SLG. In the tests our system clearly outper-
formed SLG. For further details of the tests and a comparison of the techniques
used in the two systems, see [11, 12].

The rest of the paper is organized as follows. In the next section we de-
scribe some of the underlying ideas of our implementation techniques. Section 3
illustrates the use of the system. Section 4 contains some results from the ex-
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perimental evaluation of the system and Section 5 explains how to obtain the
system.

2 Theoretical Background and Implementation
Techniques

Our implementation of the stable model semantics for ground programs is based
on an approach introduced for implementing default logic [10]. This approach
provides a framework for developing bottom-up methods for computing exten-
sions of default theories. We have used the framework to devise an efficient
implementation for the stable model semantics. One of the underlying ideas in
the approach is that stable models are characterized in terms of their so-called
full sets, i.e., their complements with respect to the negative atoms in the pro-
gram (negative atoms in the program for which the corresponding positive atoms
are not included in the stable model) [10, 11]. This characterization leads to a
novel bottom-up backtracking algorithm for searching for stable models. The
algorithm exploits a powerful pruning method which is based on approximating
stable models. The approximation technique is closely related to the well-founded
semantics. The algorithm is also able to handle focused model search, i.e., to con-
centrate the search on models with given characteristics, e.g., not containing a
given set of atoms. The algorithm has been implemented in C++ and the im-
plementation possesses some interesting properties.

— It includes an efficient (quadratic time) algorithm for computing the well-
founded model of a ground program. The algorithm employs a Fitting op-
erator to speed up the computation. In practice the well-founded model can
often be computed in linear time.

— Tt runs in linear space.

— It employs linear time algorithms for computing the deductive closures that
are needed in the algorithm.

— It exploits a dynamic search heuristic.

Our algorithm for computing the grounded version of a range-restricted
function-free normal program is based on the idea of generating only those in-
stances of range-restricted rules that are at least potentially applicable in the
stable models of the program. Descriptions of both algorithms and details of the
implementation techniques can be found in [11, 12].

3 Using Smodels

In order to compute stable models, one uses the program smodels that computes
the models, and the parser parse that translates logic programs into a format
smodels accepts, see Figure 1. Both programs work as filters, i.e., they read from
the standard input and write to the standard output. We begin by describing
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Fig. 1. Overall Architecture

the input format to parse and continue with the options and some examples of
their use.

The parser accepts the following syntax. The atoms are strings of parenthe-
ses, underscores, alphabetical, and numerical characters. In the case of range-
restricted programs, atoms begin with a lower-case alphabetical or a numerical
character, and variables with an upper-case alphabetical character. The paren-
theses must always match. To express negation one uses not-atoms, which are
atoms preceded by the string ‘not’. A rule begins with an atom denoting its head
followed by the inference symbol ‘: —’, which is in turn followed by the body of
the rule as a comma separated list of atoms and not-atoms. Finally, the rule
ends with a period. As an example, the rule

a < b,not(c)

is written as
a:— b,not c.

Comments begin with a percent sign and end with a line-break. Moreover, the
parser allows rules with variables as long as the rules are range-restricted. A rule
is range-restricted if the variables that appear in the head or in the negative
literals in the body of the rule also appear in the positive literals in the body of
the rule. Thus, the rules

a(X) :— b(X),not c. and p:— q(f(X)),not r(X).
are range-restricted, but the rules
a(X):—= b(Y). and p:— not ¢(X).

are not. Note that functions are accepted but ignored, they are only treated as
part of the predicates.

The number of stable models that are computed can be determined by the
string ‘compute’ followed by a number. Alternatively, if the string ‘compute’ is
followed by the string ‘all’, then all stable models are computed. If the ‘compute’
string is not specified, at most one stable model is computed.

If the previous construction is followed by a comma separated list of atoms
and not-atoms enclosed in braces, then only stable models that contain the atoms
and do not contain the not-atoms in the list are computed.
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The idea of the ‘compute’ instruction is to provide the ability to perform
focused model search, i.e., to concentrate the search on models with given con-
ditions. This means that smodels can be used not only to generate a given number
of stable models but also for query-evaluation. For instance, if we want to eval-
uate whether there is a stable model of a program containing the atom p(a)
but not the atom d, we would use an input file containing the program and a
‘compute’ instruction as follows

% input program

p(X) :— r(X),not ¢(X).
qg(X) :— r(X),not p(X).
r(b) : — not d.

d :— not p(c).

r(c) :— r(b).

r(a).

% query specification
compute {p(a),not d}

For this input file, the system would return a stable model containing the atom
p(a) but not the atom d provided that such a model exists. To evaluate whether
p(a) is in every stable model of the program, the ‘compute’ instruction is changed
to

compute {not p(a) }

Then the system searches for a counter-model, i.e., a model not containing p(a).
If no such model is found, p(a) belongs to every stable model of the program.

We now turn to the command line options. The parser takes two options;
the option ‘-plain’, which treats variables as ordinary atoms, and the option ‘-
text’, which produces readable output in the form of a logic program, i.e., if the
program is range-restricted it is first grounded and then displayed.

The program smodels takes one optional argument and one option, ‘-w’. The
argument is a number determining how many stable models are computed, a
zero indicating all. The option, when present, makes smodels compute only the
well-founded model.

In conclusion, a stable model of the set of rules in the file ‘prog’ would
typically be computed by the command line

parse < prog | smodels
producing the output

smodels version 1.5. Reading...done
Answer: 1

Stable Model: p(a) p(c) r(c) p(b) r(b) r(a)
Full set: d q(c) q(b) q(a)

True

Duration: 0.013

Number of extension calls: 2
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Number of wrong choices: 0
Number of atoms: 10
Number of rules: 10

The line ‘Answer: 1’ indicates that the following stable model is the first one,
which together with the corresponding full set is printed on the next two lines.
The word ‘True’ tells us that there might be more stable models, whereas the
word ‘False’ would have told us that there are no more stable models. The
duration is expressed in seconds and includes the time it takes to read the input
and print the output. The number of extension calls indicates how much of the
search space has been explored, and the number of wrong choices indicates how
many times backtracking has taken place. The number of atoms and rules are
self-explanatory.

4 Evaluation

We have tested our implementation quite extensively using test cases from

— the logic programming literature,
— combinatorial graph problems,

— circuit diagnosis, and

— propositional satisfiability.

Here we briefly describe some tests involving n-colorings and Hamiltonian cir-
cuits in planar graphs, and propositional satisfiability. For more details, further
results, and a comparison against the SLG system we refer to [11, 12].

The graphs in the tests are created with the Stanford GraphBase [9], a highly
portable collection of programs that serves as a platform for combinatorial algo-
rithms. The propositional formulas, in turn, are randomly generated formulas in
conjunctive normal form, whose clauses contain exactly three atoms, and whose
clause to atom ratio is 4.3. This ratio was chosen, as it determines a region of
hard satisfiability problems [7]. The formulas are generated by a program devel-
oped by Bart Selman.

The test cases are generated by translating a given graph to a ground logic
program in such a way that every stable model of the program corresponds to a
solution to the problem in question.

We translate the n-coloring problem from a graph into a logic program in
the following way. For each vertex a, with neighbors pi,...,p;, and each color
i€{0,1,...,n— 1}, we include the rule

not (color(a,i+ 1 mod n)),...,

not (color(a,i + n — 1 mod n)),

color(a, i) < not(color(p1,i)),. .., not (color(p;, 1))

and for each vertex a we include the rule

h « not(color(a,0)), not(color(a,1)),..., not (color(a,n — 1)).
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Finally, we consider only the stable models that do not contain the atom h.

The translation of the Hamiltonian circuit problem is somewhat more com-
plicated. For each pair (a,b) of vertices in the graph such that there is an edge
between a and b, and where by, ...,b; are the neighbors of a excluding b, and
a,...,a; are the neighbors of b excluding a, we include the rule

3

edge(b,a) <+ not (edge(bl, a)) ..... not, (edge(bi, a)) ,

3 3

not (edge(b, al)) ..... not (edge(b, aj)),

3 3

not (edge(a,b)).

Fix a vertex d. For each pair (a,b) of vertices in the graph such that there is an
edge between a and b, if b # d we include the rule

b « a,edge(a,b),
and if b = d we include the rule
d' + a,edge(a,d).

Finally, we add the rule d <, and consider only the stable models that do not
contain the vertex a, for a # d, nor the atom d’'.

In contrast, the translation of the 3-SAT problem is entirely straightforward.
For every atom a we add the rules

a < not(a) and @ <« not(a),

and for every clause ¢ we add ¢ < a if a is in the clause, and ¢ «+ @ if —a is in
the clause. The satisfying assignments are then given by the stable models that
contain all clauses.

Some test results are tabulated in Figure 2. They have been calculated as
the average time of ten different runs on a pseudo-randomly shuffled set of rules.
The rationale for shuffling the set of rules is that a particular ordering of the
rules might help the algorithm to avoid backtracking and thus give a skewed
picture of its behavior. All times are in seconds, and they represent the time to
find one stable model if one exists, or the time to decide that there are no stable
models.

The tests were run on a Pentium 75MHz, with 32 MB of memory and the
Linux 2.0.29 operating system. The C++ program smodels was compiled using
gee version 2.7.2.1.

When evaluating our system we have used test cases generated from random
graphs and random propositional formulas. There are a number of reasons for
using these kinds of randomly generated test cases. First, in order to determine
the scalability and limits of the implementation it is important to have classes of
test cases of increasing size and complexity instead of single isolated examples.
Our experience indicates that test cases based on combinatorial problems quite
naturally provide such classes of examples.

Second, our aim is to develop a framework for declarative logic programming
where the performance of the system is not too sensitive to the way in which
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the program is represented. Finding a stable model is a typical combinatorial
problem where tuning the test cases even in a very modest way, e.g., by changing
the order of some rules in the program, can lead to huge improvements in the
running times. This might then give a totally unrealistic picture of the actual
performance and stability of the algorithm. By using random test cases and by
shuffling the input program, we can evaluate the stability of the implementation
in a declarative setting.

Third, there are a lot of results on solving combinatorial problems involving
randomly generated instances. Hence, we know how to find hard instances of
these problems and we know the performance of the best special purpose algo-
rithms. It is indeed very important to have points of reference independent of
logic programming techniques for measuring the efficiency and overhead of logic
programming implementations.

Planar graphs, 3-coloring Planar graphs, 4-coloring
Vertices|Rules| Min| Average| Max| |Vertices|Rules| Min| Average| Max
100| 400| 0.06 0.06| 0.06 10{  50]0.01 0.02| 0.08
200{ 800 0.11 0.15| 0.28 20| 100{ 0.02 0.02| 0.08
300{ 1200{ 0.24 0.25| 0.25 30| 150{ 0.03 0.05| 0.10
400| 1600| 0.30 0.32| 0.35 40| 200| 0.04 0.08) 0.11
500{ 2000{ 0.32 0.37| 0.39 50| 250{ 0.05 0.09] 0.17
600| 2400| 0.36 0.43| 0.45 60| 300| 0.06 0.15| 0.65
700{ 2800| 0.45 0.51] 0.59 70| 350{ 0.08] 45.81|456.08
800| 3200{ 0.52 0.57| 0.60 80| 400| 0.09 0.14| 0.22
900{ 3600| 0.63 0.65| 0.67 90| 450]0.11 14.39(138.46
Planar graphs, Hamiltonian circuit Random 3-SAT
Vertices|Rules| Min| Average| Max| |Atoms|Rules| Min| Average| Max
14| 133|0.03 0.04 0.05 20 298| 0.02 0.03| 0.09
16| 157| 0.05 0.51 1.28 30| 447| 0.03 0.04| 0.06
18| 181 0.07 0.85 3.17 40| 596| 0.04 0.15| 0.26
20| 197 0.07 0.13 0.29 50 T745| 0.24 0.40| 0.87
22| 221]0.09 0.10 0.13 60| 894| 0.38 1.08| 2.43
24| 245|0.10 19.04| 91.38 70( 1043| 0.25 0.93| 2.22
26| 269|0.12 55.68| 272.67 80| 1192| 0.67 5.27| 15.62
28| 293|0.14| 47.56| 441.27 90| 1341| 0.31 6.41| 39.51
30| 317|0.16| 673.70|3417.52 100| 1490|17.68| 101.83|278.05

Fig. 2. Test Results

5 Awvailability
The Smodels system is freely available at http://saturn.hut.fi/pub/smodels/.

Documentation and an extensive set of test cases, including those described in
the previous section, are available at the same location.
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In order to make use of the system you will need a C++ compiler and other
standard tools such as make and tar. The system has been developed under
Linux and should work as is on any platform having the appropriate GNU tools
installed.

6 Conclusions

We have developed a C++ implementation of the well-founded and stable model
semantics for range-restricted function-free normal programs. The main empha-
sis has been in developing an implementation of the stable model semantics that
could be used in realistic applications. The novel implementation technique,
leading to linear space complexity, has turned out to be very competitive when
compared to other available implementation methods. Qur implementation ap-
pears to be the only available system capable of handling non-stratified ground
programs with several hundreds or even thousands of rules quite efficiently. This
indicates that our implementation has significantly advanced the state of the
art in computing the stable model semantics and has brought the semantics
considerably closer to applications.
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